This hands-on workshop guides participants through building and evaluating various classification models to predict equipment failures. Participants will learn by working through a series of Jupyter notebooks, from data loading and preparation to model training and evaluation, and finally deploying a model with a Streamlit application.
β Recommended Platform: Google Colab. Google Colab provides a free, interactive environment thatβs ideal for this workshop. No local installation is required!
soluciones/
directory.01_load_and_clean_data.ipynb
).File > Open notebook
.requirements.txt
file.Shift+Enter
or clicking the play button.git clone <repository-url>
cd <repository-folder>
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
pip install -r requirements.txt
streamlit run main.py
Your web browser should open with the application running.
For a live, shareable version of your application, you can deploy it to Streamlit Cloud for free.
main.py
.Each session corresponds to a Jupyter notebook in the soluciones/
directory.
Session | Notebook | Topic |
---|---|---|
1 | 01_load_and_clean_data.ipynb |
Loading, Inspecting & Cleaning Data |
2 | 02_transform_data.ipynb |
Data Transformation |
3 | 03_baseline_model.ipynb |
Creating a Baseline Model |
4 | 04_random_forest_model.ipynb |
Random Forest Classification |
5 | 05_xgboost_model.ipynb |
XGBoost Classification |
6 | 06_light_gbm_model.ipynb |
LightGBM (LGBM) Classification |
7 | 07_automl_pycaret.ipynb |
AutoML with PyCaret |
(Optional) | main.py (Streamlit app) |
Deploying a Model with Streamlit (Demo) |
By the end of this workshop, youβll be able to:
.
βββ figuras/ # Contains images used in the Streamlit application
β βββ icone.png
β βββ maintenance.jpg
βββ soluciones/ # Workshop notebooks: from data processing to modeling
β βββ 01_load_and_clean_data.ipynb
β βββ 02_transform_data.ipynb
β βββ 03_baseline_model.ipynb
β βββ 04_random_forest_model.ipynb
β βββ 05_xgboost_model.ipynb
β βββ 06_light_gbm_model.ipynb
β βββ 07_automl_pycaret.ipynb
βββ data/ # Contains datasets for the workshop
β βββ raw_data.csv
β βββ clean_data.csv
β βββ transformed_data.csv
βββ main.py # Example Streamlit application script for model deployment
βββ model/ # Contains a pre-trained example model and preprocessing objects
β βββ final_model.joblib
β βββ label_encoder.pkl
β βββ preprocessor_pipeline.pkl
βββ requirements.txt # Lists Python dependencies for local setup / Colab
βββ utils.py # Utility functions for metrics and preprocessing